一个房间有3扇同样的窗子,其中只有一扇窗子是打开的。有一只鸟自开着的窗子飞入这个房间,它只能从开着的窗子飞出去。鸟在房子里一次又一次地向着窗户飞去,试图飞出房间. 鸟飞向各扇窗子是随机的.
(1)假定鸟是没有记忆的,若这只鸟恰好在第x次试飞时飞出了房间,求试飞次数x的分布列;
(2)假定这只鸟是有记忆的,它飞向任一窗子的尝试不多于一次,若这只鸟恰好在第y次试飞时飞出了房间,求试飞次数y的分布列;
已知正项数列满足:
,数列
的前
项和为
,且满足
,
.
(1)求数列和
的通项公式;
(2)设,数列
的前
项和为
,求证:
.
如图,四棱锥的底面是正方形,侧棱
底面
,过
作
垂直
交
于
点,作
垂直
交
于
点,平面
交
于
点,且
,
.
(1)设点是
上任一点,试求
的最小值;
(2)求证:、
在以
为直径的圆上;
(3)求平面与平面
所成的锐二面角的余弦值.
图是某市月
日至
日的空气质量指数趋势图,空气质量指数(
)小于
表示空气质量优良,空气质量指数大于
表示空气重度污染,某人随机选择
月
日至
月
日中的某一天到达该市,并停留
天.
(1)求此人到达当日空气质量重度污染的概率;
(2)设是此人停留期间空气重度污染的天数,求
的分布列与数学期望.
已知函数.
(1)求函数的定义域和最小正周期;
(2)若,
,求
的值.
已知函数,
(其中
为常数).
(1)如果函数和
有相同的极值点,求
的值;
(2)设,问是否存在
,使得
,若存在,请求出实数
的取值范围;若不存在,请说明理由.
(3)记函数,若函数
有5个不同的零点,求实数
的取值范围.