游客
题文

解方程: 

科目 数学   题型 解答题   难度 较易
知识点: 一元二次方程的最值
登录免费查看答案和解析
相关试题

在Rt⊿POQ中,OP=OQ=4,M是PQ中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与⊿POQ的两直角边分别交于点A、B,
(1)求证:MA=MB
(2)连接AB,探究:在旋转三角尺的过程中,⊿AOB的周长是否存在最小值,若存在,求出最小值,若不
存在。请说明理由。

学校6名教师和234名学生集体外出活动,准备租用445座大客车或30座小客车,若租用1辆大车2辆小车供需租车费1000元;若若租用2辆大车1辆小车供需租车费1100元.
(1)求大、小车每辆的租车费各是多少元?
(2)若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案。

矩形ABCD中,AB=2AD,E为AD的中点,EF⊥EC交AB于点F,连接FC.

(1)求证:⊿AEF∽⊿DCE
(2)求tan∠ECF的值.

关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2
(1)求m的取值范围.
(2)若2(x1+x2)+ x1x2+10=0.求m的值.

如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上的一点,且CE=CD,求证:∠B=∠E

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号