(本小题满分12分)
已知向量,函数
,且
图
象上一个最高点的坐标为
,与之相邻
的一个最低点的坐标为
.
(1)求的解析式;
(2)在△ABC中,是角A、B、C所对的边,且满足
,求角B的大
小以及的取值范围.
如图,过曲线:
上一点
作曲线
的切线
交
轴于点
,又过
作
轴的垂线交曲线
于点
,然后再过
作曲线
的切线
交
轴于点
,又过
作
轴的垂线交曲线
于点
,
,以此类推,过点
的切线
与
轴相交于点
,再过点
作
轴的垂线交曲线
于点
(
N
).
(1) 求、
及数列
的通项公式;
(2) 设曲线与切线
及直线
所围成的图形面积为
,求
的表达式;
(3) 在满足(2)的条件下, 若数列的前
项和为
,求证:
N
.
(本小题满分14分)
设函数在
上的导函数为
,
在
上的导函数为
,若在
上,
恒成立,则称函数
在
上为“凸函数”.已知
.
(1)若为区间
上的“凸函数”,试确定实数
的值;
(2)若当实数满足
时,函数
在
上总为“凸函数”,求
的最大值.
(本小题满分14分)
已知椭圆的离心率
. 直线
(
)与曲线
交于不同的两点
,以线段
为直径作圆
,圆心为
.
(1) 求椭圆的方程;
(2) 若圆与
轴相交于不同的两点
,求
的面积的最大值.
(本小题满分l4分)
如图4,在四棱锥中,底面
是矩形,
平面
,
,
,
于点
.
(1) 求证:;
(2) 求直线与平面
所成的角的余弦值.