甲有一只放有x个红球,y个黄球,z个白球的箱子,乙有一只放有3个红球,2个黄球,1个白球的箱子,
(1)两个各自从自己的箱子中任取一球,规定:当两球同色时甲胜,异色时乙胜。若用x、y、z表示甲胜的概率;
2)在(1)下又规定当甲取红、黄、白球而胜的得分分别为1、2、3分,否则得0分,求甲得分的期望的最大值及此时x、y、z的值。
已知数列的前
项和为
,且
,
数列满足
,且点
在直线
上.
(Ⅰ)求数列、
的通项公式;
(Ⅱ)求数列的前
项和
;
(Ⅲ)设,求数列
的前
项和
.
如图,为圆
的直径,点
、
在圆
上,
,矩形
所在的平面与圆
所在的平面互相垂直.已知
,
.
(Ⅰ)求证:平面平面
;
(Ⅱ)求直线与平面
所成角的大小;
(Ⅲ)当的长为何值时,平面
与平面
所成的锐二面角的大小为
?
给定直线动圆M与定圆
外切且与直线
相切.
(1)求动圆圆心M的轨迹C的方程;
(2)设A、B是曲线C上两动点(异于坐标原点O),若求证直线AB过一定点,并求出定点的坐标.
某学校为调查高二年级学生的身高情况,按随机抽样的方法抽取200名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有48人.(Ⅰ)在抽取的学生中,身高不超过165cm的男、女生各有多少人?并估计男生的平均身高。
(Ⅱ)在上述200名学生中,从身高在170~175cm之间的学生按男、女性别分层抽样的方法,抽出7人,从这7人中选派4人当旗手,求4人中至少有一名女生的概率.
已知,函数
(Ⅰ)若求
的值;
(Ⅱ)求函数的最大值和单调递增区间。