在一条笔直的工艺流水线上有个工作台,将工艺流水线用如图
所示的数轴表示,各工作台的坐标分别为
,
,
,
,每个工作台上有若干名工人.现要在流水线上建一个零件供应站,使得各工作台上的所有工人到供应站的距离之和最短.
(Ⅰ)若,每个工作台上只有一名工人,试确定供应站的位置;
(Ⅱ)若,工作台从左到右的人数依次为
,
,
,
,
,试确定供应站的位置,并求所有工人到供应站的距离之和的最小值.
在某校教师趣味投篮比赛中,比赛规则是: 每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖. 已知教师甲投进每个球的概率都是.
(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;
(Ⅱ)求教师甲在一场比赛中获奖的概率;
(Ⅲ)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的概率;教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率相等吗?
已知各项都不相等的等差数列的前6项和为60,且
为
和
的等比中项.
( I )求数列的通项公式;
(II) 若数列满足
,且
,求数列
的前
项和
.
在中,
分别是角
的对边,向量
,
,且
.
(Ⅰ)求角的大小;
(Ⅱ)设,且
的最小正周期为
,求
在区间
上的最大值和最小值.
设,
为共轭复数,且
,求
和
。
已知:如图,⊙O与⊙P相交于A,B两点,点P在⊙O上,⊙O的弦BC切⊙P于点B,CP及其延长
线交⊙P于D,E两点,过点E作EF⊥CE交CB延长线于点F.若CD=2,CB=2
,求E
F的长.