现在市面上有普通型汽车(以汽油为燃料)和电动型汽车两种。某品牌普通型汽车车价为12万元,第一年汽油的消费为6000元,随着汽油价格的不断上升,汽油的消费每年以20%的速度增长。其它费用(保险及维修费用等)第一年为5000元,以后每年递增2000元。而电动汽车由于节能环保,越来越受到社会认可。某品牌电动车在某市上市,车价为25万元,购买时一次性享受国家补贴价6万元和该市市政府补贴价4万元。电动汽车动力不靠燃油,而靠电池。电动车使用的普通锂电池平均使用寿命大约两年(也即两年需更换电池一次),电池价格为1万元,电动汽车的其它费用每年约为5000元。
求使用年,普通型汽车的总耗资费
(万元)的表达式
(总耗资费=车价+汽油费+其它费用)
比较两种汽车各使用10年的总耗资费用
(参考数据:
)
某食品厂每天需用食品配料200千克,配料的价格为元/千克,每次进货需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下: 7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.(Ⅰ)当9天购买一次配料时,求该厂用于配料的保管费用P是多少元?
(Ⅱ)设该厂天购买一次配料,求该厂在这
天中用于配料的总费用
(元)关于
的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少?
已知平面区域恰好被面积最小的圆
及其内部所覆盖.
(Ⅰ)试求圆
的方程;(Ⅱ)若斜率为1的直线
与圆C交于点
、
,且
,求直线
的方程.
解关于的不等式
.
(Ⅰ)若,记数列
的前n项和为
,当
时,求
;
(Ⅱ)若,问是否存在实数
,使得
中每一项恒小于它后面的项?若存
在,求出实数的取值范围
(Ⅰ)当时,求
的极值;
(Ⅱ)若在区间
上是增函数,求实数
的取值范围