某单位名员工参加“社区低碳你我他”活动.他们的年龄在
岁至
岁
之间.按年龄分组:第1组,第
组
,第3组
,第
组
,第
组
,得到的频率分布直方图如图所示.下表是年龄的频率分布表.
区间 |
![]() |
![]() |
![]() |
![]() |
![]() |
人数 |
![]() |
![]() |
![]() |
|
|
(1)求正整数、
、
的值;
(2)现要从年龄较小的第、
、
组中用分层抽样的方法抽取
人,则年龄在第
、
、
组的人数分别
是多少?
(3)在(2)的条件下,从这人中随机抽取
人参加社区宣传交流活动,求恰有
人在第
组的概率.
如图,已知椭圆
的离心率为
,以该椭圆上的点和椭圆的左、右焦点
为顶点的三角形的周长为
.一等轴双曲线的顶点是该椭圆的焦点,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点分别为
和
.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线
、
的斜率分别为
、
,证明
;
(Ⅲ)是否存在常数
,使得
恒成立?若存在,求
的值;若不存在,请说明理由.
某学校举行知识竞赛,第一轮选拔共设有
四个问题,规则如下:
每位参加者计分器的初始分均为10分,答对问题
分别加1分、2分、3分、6分,答错任一题减2分;
每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局,当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;
每位参加者按问题
顺序作答,直至答题结束.
假设甲同学对问题
回答正确的概率依次为
,且各题回答正确与否相互之间没有影响.
(Ⅰ)求甲同学能进入下一轮的概率;
(Ⅱ)用
表示甲同学本轮答题结束时答题的个数,求
的分布列和数学的
.
已知函数
.
(Ⅰ)当
时,讨论
的单调性;
(Ⅱ)设
当
时,若对任意
,存在
,使
,求实数
取值范围.
已知等差数列
满足:
,
的前n项和为
.
(Ⅰ)求
及
;
(Ⅱ)令bn=
(nN*),求数列
的前n项和
.
已知函数
,其图象过点
.
(Ⅰ)求
的值;
(Ⅱ)将函数
的图象上各点的横坐标缩短到原来的
,纵坐标不变,得到函数
的图象,求函数
在
上的最大值和最小值.