某单位
名员工参加“社区低碳你我他”活动.他们的年龄在
岁至
岁
之间.按年龄分组:第1组
,第
组
,第3组
,第
组
,第
组
,得到的频率分布直方图如图所示.下表是年龄的频率分布表.
| 区间 |
![]() |
![]() |
![]() |
![]() |
![]() |
| 人数 |
![]() |
![]() |
![]() |
|
|
(1)求正整数
、
、
的值;
(2)现要从年龄较小的第
、
、
组中用分层抽样的方法抽取
人,则年龄在第
、
、
组的人数分别
是多少?
(3)在(2)的条件下,从这
人中随机抽取
人参加社区宣传交流活动,求恰有
人在第
组的概率.
如图所示,已知点P是⊙O外一点,PS、PT是⊙O的两条切线,过点P作⊙O
的割线PAB,交⊙O于A、B两点,与ST交于点C,求证: 

已知x1、x2是关于x的一元二次方程x2+(3a-1)x+2a2-1=0的两个实数根,使得
(3x1-x2)(x1-3x2)=-80成立.求实数a的所有可能值.
在某服装批发市场,某种品牌的时装当季节将来临时,价格呈上升趋势,设这种时装开始时定价为20元,并且每周(7天)涨价2元,从第6周开始保持30元的价格平稳销售;从第12周开始,当季节即将过去时,平均每周减价2元,直到第16周周末,该服装不再销售。
⑴试建立销售价y与周次x之间的函数关系式;
⑵若这种时装每件进价Z与周次
次之间的关系为Z=
,1≤
≤16,且
为整数,试问该服装第几周出售时,每件销售利润最大?最大利润为多少?
如图,已知锐角△ABC的面积为1,正方形DEFG是△ABC的一个内接三角形,
DG∥BC,求正方形DEFG面积的最大值.
已知过抛物线
的焦点,斜率为
的直线交抛物线于
(
)两点,且
.
(1)求该抛物线的方程;
(2)
为坐标原点,
为抛物线上一点,若
,求
的值.