游客
题文

已知:∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD+AB=CB,过程如下:过点C作CE⊥CB于点C,与MN交于点E
∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.
∵四边形ACDB内角和为360°,∴∠BDC+∠CAB=180°.
∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.
又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.
又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=CB.

(1)当MN绕A旋转到如图(2)和图(3)两个位置时,其它条件不变,则BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明.
(2)MN在绕点A旋转过程中,当∠BCD=30°,BD=时,则CB=__________.

科目 数学   题型 解答题   难度 中等
知识点: 解直角三角形
登录免费查看答案和解析
相关试题

解下列方程
(1)x2-5x-6=0
(2)(x+1)(x-1)=2x.

如图,在菱形ABCD中,∠A=60°,以点D为圆心的⊙D与边AB相切于点E.

(1)求证:⊙D与边BC也相切;
(2)设⊙D与BD相交于点H,与边CD相交于点F,连接HF.若AB=,求图中阴影部分的面积(结果保留π);
(3)假设⊙D的半径为r,⊙D上一动点M从点F出发,按逆时针方向运动一周,当△MDF与△ABD的面积之比为时,求动点M经过的弧长(结果用含r 的式子表示,保留π).

随着人民生活水平的不断提高,大丰区家庭轿车的拥有量逐年增加.据统计,怡景小区2012年底拥有家庭轿车144辆,2014年底家庭轿车的拥有量达到196辆.2014年底小区拥有室内车位和露天车位共180个.假设该小区2012年底到2016年底家庭轿车拥有量的年平均增长率都相同.
(1)估计该小区到2015年底家庭轿车将达到多少辆?(结果四舍五入取整数)
(2)为了缓解停车矛盾,该小区决定投资25万元再建造若干个停车位.据测算,建造费用分别为室内车位6000元/个,露天车位2000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的3倍,但不超过室内车位的4.5倍.在投资款恰好用完的情况下求该小区可建两种车位各多少个?试写出所有可能的方案.并判断有没有方案能够满足2016年底小区所有轿车同时停车的需求?

已知关于x的方程x 2 – ( k + 2 )x +k 2 +1 = 0
(1)k取什么值时,方程有两个不相等的实数根?
(2)如果方程有两个实数根)且满足,求k的值和方程的两根.

如图,有一石拱桥的桥拱是圆弧形,正常水位时水面宽AB="60" m,水面到拱顶距离CD="18" m.如果水面到拱顶的距离小于3.8 m,需要采取紧急措施以防流水对桥的危害.现洪水经过,测得水面宽MN="32" m,此时是否需要采取紧急措施?请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号