如图,在矩形ABCD中,AB=8cm,BC=20cm,E是AD的中点.动点P从A点出发,沿A-B-C路线以1cm/秒的速度运动,运动的时间为t秒.将APE以EP为折痕折叠,点A的对应点记为M.
(1)如图(1),当点P在边AB上,且点M在边BC上时,求运动时间t;
(2)如图(2),当点P在边BC上,且点M也在边BC上时,求运动时间t;
(3)直接写出点P在运动过程中线段BM长的最小值.
小明在解决问题:已知a=,求
的值.
他是这样分析与解的:∵a==
,
∴a-2=,∴
∴,∴
=2(
=2×(-1)+1=-1.
请你根据小明的分析过程,解决如下问题:
(1)化简
(2)若a=,①求
的值;
②直接写出代数式的值= ;
= .
(1)叙述三角形中位线定理,并运用平行四边形的知识证明;
(2)运用三角形中位线的知识解决如下问题:如图,在四边形ABCD中,AD∥BC,E,F分别是AB,CD的中点,求证EF=.
如图,E、F分别是正方形ABCD中BC和CD边上的点,CE=BC,F为CD的中点,连接AF、AE、EF,
(1)判定△AEF的形状,并说明理由;
(2)设AE的中点为O,判定∠BOF和∠BAF的数量关系,并证明你的结论.
如图,在直角坐标系中,A(0,4),C(3,0).
(1)以AC为边,在其上方作一个四边形,使它的面积为;
(2)画出线段AC关于y轴对称线段AB,并计算点B到AC的距离.