如图,点D,E在△ABC的边BC上, ,求证: .
在平面直角坐标系 中,已知抛物线 经过 两点. 是抛物线上一点,且在直线 的上方.
(1)求抛物线的解析式;
(2)若 面积是 面积的2倍,求点 的坐标;
(3)如图, 交 于点 , 交 于点 .记 , , 的面积分别为 .判断 是否存在最大值.若存在,求出最大值;若不存在,请说明理由.
已知 , , .
(1)如图1, 平分 ,求证:四边形 是菱形;
(2)如图2,将(1)中的 绕点 逆时针旋转(旋转角小于 ), 的延长线相交于点 ,用等式表示 与 之间的数量关系,并证明;
(3)如图3,将(1)中的 绕点 顺时针旋转(旋转角小于 ),若 ,求 的度数.
如图,BD是矩形ABCD的对角线.
(1)求作 ,使得 与 相切(要求:尺规作图,不写作法,保留作图痕迹);
(2)在(1)的条件下,设BD与 相切于点E, ,垂足为F.若直线CF与 相切于点G,求 的值.
在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.
(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?
(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.