提出问题
如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.
类比探究
如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.
拓展延伸
如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.
已知方程5m﹣6=4m的解也是关于x的方程2(x﹣3)﹣n=4的解.
(1)求m、n的值;
(2)已知线段AB=m,在直线AB上取一点P,恰好使,点Q为PB的中点,求线段AQ的长.
某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加a个座位.
(1)请你在下表的空格里填写一个适当的代数式:
排数 |
第1排 |
第2排 |
第3排 |
第4排 |
… |
第n排 |
座位数 |
12 |
12+a |
… |
已知第15排座位数是第5排座位数的2倍,求a的值,并计算第21排有多少个座位?
解关于x的方程:
(1)4﹣x=3(2﹣x)
(2).
先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣
.
如图,直线l上有A、B两点,AB=12cm,点O是线段AB上的一点,OA=2OB.
(1)OA= cm,OB= cm;
(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;
(3)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s,设运动时间为ts.当点P与点Q重合时,P、Q两点停止运动.
①当t为何值时,2OP-OQ=4;
②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,直到点P、Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?