提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当
时,车流速度
是车流密度x的一次函数.
(1)当时,求函数
的表达式;
(2)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)
可以达到最大,并求出最大值(精确到1辆/小时)
四棱锥P-ABCD中,PA⊥平面ABCD,E为AD的中点,ABCE为菱形,∠BAD=120°,PA=AB,G、F分别是线段CE、PB的中点.
(Ⅰ) 求证:FG∥平面PDC;
(Ⅱ) 求二面角的正切值.
已知正项数列的首项
,前
项和
满足
.
(Ⅰ)求证:为等差数列,并求数列
的通项公式;
(Ⅱ)记数列的前
项和为
,若对任意的
,不等式
恒成立,求实数
的取值范围.
已知函数.
(Ⅰ)若方程在
上有解,求
的取值范围;
(Ⅱ)在中,
分别是A,B,C所对的边,若
,且
,
,求
的最小值.
在极坐标系中,直线
的极坐标方程为
是
上任意一点,点P在射线OM上,且满足
,记点P的轨迹为
。
(Ⅰ)求曲线的极坐标方程;
(Ⅱ)求曲线上的点到直线
距离的最大值。
如图,AB是圆O的直径,C,D是圆O上两点,AC与BD相交于点E,GC,GD是圆O的切线,点F在DG的延长线上,且。求证:
(Ⅰ)D、E、C、F四点共圆;(Ⅱ)