如图,圆O与离心率为的椭圆T:()相切于点M。⑴求椭圆T与圆O的方程;⑵过点M引两条互相垂直的两直线、与两曲线分别交于点A、C与点B、D(均不重合)。①若P为椭圆上任一点,记点P到两直线的距离分别为、,求的最大值;②若,求与的方程。
已知函数, 其中. (1)当时,求曲线在点处的切线方程; (2)当时,求曲线的单调区间与极值.
已知函数,数列的项满足:,(1)试求 (2) 猜想数列的通项,并利用数学归纳法证明.
已知函数 (1) 若函数在上单调,求的值; (2)若函数在区间上的最大值是,求的取值范围.
设是虚数,是实数,且 (1) 求的实部的取值范围 (2)设,那么是否是纯虚数?并说明理由。
已知数列满足(I)求数列的通项公式; (II)若数列中,前项和为,且证明:
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号