设是各项均为非零实数的数列
的前
项和,给出如下两个命题上:
命题:
是等差数列;命题
:等式
对任意
(
)恒成立,其中
是常数。
⑴若是
的充分条件,求
的值;
⑵对于⑴中的与
,问
是否为
的必要条件,请说明理由;
⑶若为真命题,对于给定的正整数
(
)和正数M,数列
满足条件
,试求
的最大值。
已知向量,设函数
.
(1)求的单调增区间;
(2)若,求
的值.
设集合,集合
,集合C为不等式
的解集.
(1)求;
(2)若,求a的取值范围.
A,B,C为△ABC的三内角,其对边分别为a, b, c,若.
(1)求;
(2)若,
,求△ABC的面积.
(本小题满分14分)
已知椭圆的两个焦点的坐标分别为
,
,并且经过点(
,
),M、N为椭圆
上关于
轴对称的不同两点.
(1)求椭圆的标准方程;
(2)若,试求点
的坐标;
(3)若为
轴上两点,且
,试判断直线
的交点
是否在椭圆
上,并证明你的结论.
(本小题满分14分)
如图6,已知点是圆心为
半径为1的半圆弧上从点
数起的第一个三等分点,
是直径,
,直线
平面
.
(1)证明:;
(2)在上是否存在一点
,使得
∥平面
,若存在,请确定点
的位置,并证明之;若不存在,请说明理由;
(3)求点到平面
的距离.