如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.
(1)证明:DB=DC;
(2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.
已知函数.
(1)讨论f(x)在区间(0,1)上的单调性;
(2)当a∈[3,+∞)时,曲线上总存在相异的两点
,使得曲线
在点P,Q处的切线互相平行,求证:
.
已知函数.
(1)若直线与
的反函数的图象相切,求实数k的值;
(2)设,讨论曲线
与曲线
公共点的个数;
(3)设,比较
与
的大小,并说明理由.
已知动点P,Q都在曲线C: (t为参数)上,对应参数分别为t=
与t=2
(0<
<2π),M为PQ的中点.
(1)求M的轨迹的参数方程;
(2)将M到坐标原点的距离d表示为的函数,并判断M的轨迹是否过坐标原点.
在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标为(,
),直线l的极坐标方程为ρcos(
)=a,且点A在直线l上.
(1)求a的值及直线l的直角坐标方程;
(2)圆C的参数方程为(
为参数),试判断直线l与圆C的位置关系.