已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图) .
(1) 当x=2时,求证:BD⊥EG ;
(2) 若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3) 当f(x)取得最大值时,求二面角D-BF-C的余弦值.
(本小题满分12分) 已知二次函数,当
时函数取最小值
,且
.
(1) 求的解析式;
(2) 若在区间
上不单调,求实数
的取值范围。
(本小题满分12分)求下列函数值域
(1)
(2)
(本小题满分10分) 设集合,
.
(1)若,判断集合
与
的关系;
(2)若,求实数
组成的集合
.
(本小题满分12分)设A(x1,y1),B(x2,y2)是函数f(x)=的图象上任意两点,且
,已知点M的横坐标为
.
求证:M点的纵坐标为定值;
若Sn=f(∈N*,且n≥2,求Sn;
已知an=,其中n∈N*.
Tn为数列{an}的前n项和,若Tn<λ(Sn+1+1)对一切n∈N*都成立,试求λ的取值范围.
(本小题满分12分)设{an}是公比为 q的等比数列,且a1,a3,a2成等差数列.
(1)求q的值;
(2)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.