(本小题满分12分)为迎接2014年“马”年的到来,某校举办猜奖活动,参与者需先后回答两道选择题,问题有三个选项,问题
有四个选项,但都只有一个选项是正确的,正确回答问题
可获奖金
元,正确回答问题
可获奖金
元,活动规定:参与者可任意选择回答问题的顺序,如果第一个问题回答正确,则继续答题,否则该参与者猜奖活动终止,假设一个参与者在回答问题前,对这两个问题都很陌生.
(1)如果参与者先回答问题,求其恰好获得奖金
元的概率;
(2)试确定哪种回答问题的顺序能使该参与者获奖金额的期望值较大.
(理科题)(本小题12分)
某房产开发商投资81万元建一座写字楼,第一年装修费为1万元,以后每年增加2万元,把写字楼出租,每年收入租金30万元。
(1)若扣除投资和各种装修费,则从第几年开始获取纯利润?
(2)若干年后开发商为了投资其他项目,有两种处理方案①年平均利润最大时以46万元出售该楼;
②纯利润总和最大时,以10万元出售楼,问选择哪种方案盈利更多?
(文科题)(本小题12分)
要建造一个无盖长方体水池,底面一边长固定为8m,最大装水量为72m,池底和池壁的造价分别为2
元/
、
元/
,怎样设计水池底的另一边长和水池的高,才能使水池的总造价最低?最低造价是多少?
(本小题14分)
在等差数列中,
,
.
(1)求数列的通项
;
(2)令,证明:数列
为等比数列;
(3)求数列的前
项和
.
(本小题12分)
某工厂用两种不同原料可生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90kg; 若采用乙种原料,每吨成本1500元,运费400元,可得产品100kg,如果每月原料的总成本不超过6000元,运费不超过2000元,那么如何分配甲乙两种原料使此工厂每月生产的产品最多?最多是多少千克?
(本小题12分)
在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且
(1)求角C的大小;
(2)若c=,且△ABC的面积为
,求a+b的值。