游客
题文

如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.

(1)当点D′恰好落在EF边上时,求旋转角a的值;
(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;
(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 对称式和轮换对称式
登录免费查看答案和解析
相关试题

甲、乙两名运动员进行长跑训练,两人距终点的路程y(米)与跑步时间x之间的函数图象如图所示,根据图象所提供的信息解答问题:
(1)他们在进行米的长跑训练,在0<x<15的时段内,速度较快的人是
(2)求甲距终点的路程y(米)和跑步时间x之间的函数关系式;
(3)当x=15时,两人相距多少米?在15<x<20的时段内,求两人速度之差.

解不等式组:,且写出使不等式组成立的所有整数.

先化简,再求值:,其中

如图,已知∠MON两边分别为OM、ON,sin∠O=且OA=5,点D为线段OA上的动点(不与O重合),以A为圆心、AD为半径作⊙A,设OD=x.

(1)若⊙A交∠O 的边OM于B、C两点,BC=y,求y关于x的函数解析式,并写出函数的定义域;
(2)将⊙A沿直线OM翻折后得到⊙A′.
①若⊙A′与直线OA相切,求x的值;
②若⊙A′与以D为圆心、DO为半径的⊙D相切,求x的值.

如图,直线y=4x+4与x轴、y轴相交于B、C两点,抛物线y=ax2-2ax+c(a≠0)过点B、C,且与x轴另一个交点为A,以OC、OA为边作矩形OADC,CD交抛物线于点G.
(1)求抛物线的解析式以及点A的坐标;
(2)已知直线x=m交OA于点E,交CD于点F,交AC于点M,交抛物线(CD上方部分)于点P,请用含m的代数式表示PM的长;
(3)在(2)的条件下,联结PC,若△PCF和△AEM相似,求m的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号