已知函数.
(1)求的单调区间;
(2)若,
在区间
恒成立,求a的取值范围.
已知圆,直线
与圆
相交于
两点,且A点在第一象限.
(1)求;
(2)设(
)是圆
上的一个动点,点
关于原点的对称点为
,点
关于
轴的对称点为
,如果直线
与
轴分别交于
和
.问
是否为定值?若是,求出定值,若不是,说明理由.
如图,△是等边三角形,
,
,
,
,
分别是
,
,
的中点,将△
沿
折叠到
的位置,使得
.
(1)求证:平面平面
;
(2)求证:平面
.
通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下的列联表:
性别与看营养说明列联表单位: 名
男 |
女 |
总计 |
|
看营养说明 |
50 |
30 |
80 |
不看营养说明 |
10 |
20 |
30 |
总计 |
60 |
50 |
110 |
(1)从这50名女生中按是否看营养说明采取分层抽样,抽取一个容量为10的样本,问样本中看与不看营养说明的女生各有多少名?
(2)根据以上列联表,能否在犯错误的概率不超过0.01的前提下认为性别与是否看营养说明之间有关系?
下面的临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:,其中
)
已知
(1)求的最小值
(2)由(1)推出的最小值C
(不必写出推理过程,只要求写出结果)
(3)在(2)的条件下,已知函数若对于任意的
,恒有
成立,求
的取值范围.
已知椭圆(a>b>0)抛物线
,从每条曲线上取两个点,将其坐标记录于下表中:
![]() |
![]() |
4 |
![]() |
1 |
![]() |
2 |
4 |
![]() |
2 |
(1)求的标准方程;(2)四边形ABCD的顶点在椭圆
上,且对角线AC、BD过原点O,若
,
(i) 求的最值.
(ii) 求四边形ABCD的面积;