游客
题文

某学校的三个学生社团的人数分布如下表(每名学生只能参加一个社团):

 
围棋社
舞蹈社
拳击社
男生
5
10
28
女生
15
30
m

学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从三个社团成员中抽取18人,结果拳击社被抽出了6人.
(Ⅰ)求拳击社团被抽出的6人中有5人是男生的概率;
(Ⅱ)设拳击社团有X名女生被抽出,求X的分布列及数学期望.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分14分)已知抛物线,直线截抛物线C所得弦长为
(1)求抛物线的方程;
(2)已知是抛物线上异于原点的两个动点,记试求当取得最小值时的最大值.

(本小题满分13分)已知函数处取得极小值.
(1)求的值;
(2)若处的切线方程为,求证:当时,曲线不可能在直线的下方.

(本小题满分12分)已知等比数列的首项,公比,数列项的积记为
(1)求使得取得最大值时的值;
(2)证明中的任意相邻三项按从小到大排列,总可以使其成等差数列,如果所有这些等差数列的公差按从小到大的顺序依次设为,证明:数列为等比数列.(参考数据

(本小题满分12分)如图是三棱柱的三视图,正(主)视图和俯视图都是矩形,侧(左)视图为等边三角形,的中点.

(1)求证:∥平面
(2)设垂直于,且,求点到平面的距离.

(本小题满分12分)已知正方形的边长为2,分别是边的中点.
(1)在正方形内部随机取一点,求满足的概率;
(2)从这八个点中,随机选取两个点,记这两个点之间的距离的平方为,求

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号