已知椭圆
的左、右焦点分别为
、
,
为原点.
(1)如图1,点
为椭圆
上的一点,
是
的中点,且
,求点
到
轴的距离;
(2)如图2,直线
与椭圆
相交于
、
两点,若在椭圆
上存在点
,使四边形
为平行四边形,求
的取值范围.
四面体
及其三视图如图所示,平行于棱
的平面分别交四面体的棱
于点
.
(1)求四面体
的体积;
(2)证明:四边形
是矩形.
的内角
所对的边分别为
.
(1)若
成等差数列,证明:
;
(2)若
成等比数列,且
,求
的值.
在平面直角坐标系
中,椭圆
的离心率为
,直线
被椭圆
截得的线段长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过原点的直线与椭圆
交于
两点(
不是椭圆
的顶点).点
在椭圆
上,且
,直线
与
轴、
轴分别交于
两点.
(i)设直线
的斜率分别为
,证明存在常数
使得
,并求出
的值;
(ii)求
面积的最大值.
设函数 其中 为常数,
(1)若 ,求曲线 处的切线方程;
(2)讨论函数
的单调性.
在等差数列
中,已知公差
,
是
与
的等比中项.
(1)求数列
的通项公式;
(2)设
,记
,求
.