盒子中装有四张大小形状均相同的卡片,卡片上分别标有数其中
是虚数单位.称“从盒中随机抽取一张,记下卡片上的数后并放回”为一次试验(设每次试验的结果互不影响).
(1)求事件 “在一次试验中,得到的数为虚数”的概率
与事件
“在四次试验中,
至少有两次得到虚数” 的概率;
(2)在两次试验中,记两次得到的数分别为,求随机变量
的分布列与数学期望
(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90o,PA⊥底面ABCD,PA=AB=AD=2,BC=1,E为PD的中点.
(1) 求证:CE∥平面PAB;
(2) 求PA与平面ACE所成角的大小;
(3) 求二面角E-AC-D的大小.
(本小题满分12分) 设函数f(x)=,其中向量
,
.
(1)求f( )的值及f( x)的最大值。
(2)求函数f( x)的单调递增区间.
设曲线:
上的点
到点
的距离的最小值为
,若
,
,
(1)求数列的通项公式;
(2)求证:;
(3)是否存在常数,使得对
,都有不等式:
成立?请说明理由.
已知函数,
R.
(1)求函数的单调区间;
(2)是否存在实数,使得函数
的极值大于
?若存在,求
的取值范围;若不存
在,说明理由.
已知向量,
(1)求及
;
(2)若函数的最小值为
,求
的值.