如图,在三棱锥
中,平面
平面
,
,
.设
,
分别为
,
中点.
(Ⅰ)求证:
∥平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)试问在线段
上是否存在点
,使得过三点
,
,
的平面内的任一条直线都与平面
平行?若存在,指出点
的位置并证明;若不存在,请说明理由.
如图,正三棱柱ABC—A1B1C1的底面边长为a,点M在边 BC上,△AMC1是以点M为直角顶点的等腰直角三角形。
(Ⅰ)求证点M为边BC的中点;
(Ⅱ)求点C到平面AMC1的距离;
(Ⅲ)求二面角M—AC1—C的大小。
已知函数
(I)求函数
的最小值和最小正周期;
(II)设△
的内角
对边分别为
,且
,若
与
共线,求
的值.
已知函数
.(
)
(1)若
在区间
上单调递增,求实数
的取值范围;
(2)若在区间
上,函数
的图象恒在曲线
下方,求
的取值范围.
已知递增等差数列
满足:
,且
成等比数列.
(1)求数列
的通项公式
;
(2)若不等式
对任意
恒成立,试猜想出实数
的最小值,并证明.
已知函数
.
(1)求
在区间
上的最大值;
(2)若函数
在区间
上存在递减区间,求实数m的取值范围.