据《中国新闻网》10月21日报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:
|
应该取消 |
应该保留 |
无所谓 |
||
在校学生 |
2100人 |
120人 |
y人 |
||
社会人士 |
600人 |
x人 |
z人 |
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.
(Ⅰ)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(Ⅱ)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.
已知矩阵A=把点(1,1)变换成点(2,2)
(Ⅰ)求的值
(Ⅱ)求曲线C:在矩阵A的变换作用下对应的曲线方程.
如下图,过曲线:
上一点
作曲线
的切线
交
轴于点
,又过
作
轴的垂线交曲线
于点
,然后再过
作曲线
的切线
交
轴于点
,又过
作
轴的垂线交曲线
于点
,
,以此类推,过点
的切线
与
轴相交于点
,再过点
作
轴的垂线交曲线
于点
(
N
).
(1) 求、
及数列
的通项公式;(2) 设曲线
与切线
及直线
所围成的图形面积为
,求
的表达式; (3) 在满足(2)的条件下, 若数列
的前
项和为
,求证:
N
.
如图所示,设抛物线的焦点为
,且其准线与
轴交于
,以
,
为焦点,离心率
的椭圆
与抛物线
在
轴上方的一个交点为P.
(1)当时,求椭圆
的方程;
(2)是否存在实数,使得
的三条边的边长是连续的自然数?若存在,求出这样的实数
;若不存在,请说明理由.
已知向量向量
与向量
的夹角为
,且
.
(1)求向量;
(2)若向量与
共线,向量
,其中
、
为
的内角,且
、
、
依次成等差数列,求
的取值范围.
如图,在直三棱柱ABC-A1B1C1中,底面△ABC为等腰直角三角形,∠B = 900,D为棱BB1上一点,且面DA1 C⊥面AA1C1C.求证:D为棱BB1中点;(2)为何值时,二面角A -A1D - C的平面角为600.