(本小题满分12分)
某校为宣传县教育局提出的“教育发展,我的责任”教育实践活动,要举行一次以“我
为教育发展做什么”为主题的的演讲比赛,比赛分为初赛、复赛、决赛三个阶段进行,已知
某选手通过初赛、复赛、决赛的概率分别是,且各阶段通过与否相互独立.
(I)求该选手在复赛阶段被淘汰的概率;
(II)设该选手在比赛中比赛的次数为,求
的分布列、数学期望和方差.
设的内角
所对的边长分别为
,且
,A=
,
.
(1)求函数的单调递增区间及最大值;
(2)求的面积的大小
已知函数,
(
)
(1)对于函数中的任意实数x,在
上总存在实数
,使得
成立,求实数
的取值范围
(2)设函数,当
在区间
内变化时,
(1)求函数的取值范围;
(2)若函数有零点,求实数m的最大值.
设椭圆C1:的右焦点为F,P为椭圆上的一个动点.
(1)求线段PF的中点M的轨迹C2的方程;
(2)过点F的直线l与椭圆C1相交于点A、D,与曲线C2顺次相交于点B、C,当时,求直线l的方程.
如图,在平面
内,
,AB=2BC=2,P为平面
外一个动点,且PC=
,
(1)问当PA的长为多少时,
(2)当的面积取得最大值时,求直线PC与平面PAB所成角的正弦值
在数列{an}中,,
,
(1)求数列的通项公式
(2)设(
),记数列
的前k项和为
,求
的最大值.