如图,半径为30
的圆形(
为圆心)铁皮上截取一块矩形材料
,其中点
在圆弧上,点
在两半径上,现将此矩形材料卷成一个以
为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设
与矩形材料的边
的夹角为
,圆柱的体积为
.
(Ⅰ)求
关于
的函数关系式?
(Ⅱ)求圆柱形罐子体积
的最大值.
在数列{an}中,a1=1,{an}的前n项和Sn满足2Sn=an+1.
(1)求数列{an}的通项公式;
(2)若存在n∈N*,使得λ≤
,求实数λ的最大值.
已知{an}为等差数列,且a2=-1,a5=8.
(1)求数列{|an|}的前n项和;
(2)求数列{2n·an}的前n项和.
已知数列{an}的前n项和Sn满足Sn+an+
n-1=2(n∈N*),设cn=2nan.
(1)求证:数列{cn}是等差数列,并求数列{an}的通项公式.
(2)按以下规律构造数列{bn},具体方法如下:
b1=c1,b2=c2+c3,b3=c4+c5+c6+c7,…,第n项bn由相应的{cn}中2n-1项的和组成,求数列{bn}的通项bn.
已知n∈N*,数列{dn}满足dn=
,数列{an}满足an=d1+d2+d3+…+d2n,又知在数列{bn}中,b1=2,且对任意正整数m,n,
.
(1)求数列{an}和数列{bn}的通项公式;
(2)将数列{bn}中的第a1项,第a2项,第a3项,…,第an项,…删去后,剩余的项按从小到大的顺序排成新数列{cn},求数列{cn}的前2 013项和.
已知各项均不相等的等差数列{an}的前5项和为S5=35,且a1+1,a3+1,a7+1成等比数列.
(1)求数列{an}的通项公式;
(2)设Tn为数列
的前n项和,问是否存在常数m,使Tn=m
,若存在,求m的值;若不存在,说明理由.