如图,半径为30的圆形(
为圆心)铁皮上截取一块矩形材料
,其中点
在圆弧上,点
在两半径上,现将此矩形材料卷成一个以
为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设
与矩形材料的边
的夹角为
,圆柱的体积为
.
(Ⅰ)求关于
的函数关系式?
(Ⅱ)求圆柱形罐子体积的最大值.
如图:是⊙
的直径,
是弧
的中点,
⊥
,垂足为
,
交
于点
.
(1)求证:=
;
(2)若=4,⊙
的半径为6,求
的长.
已知椭圆(a>b>0)的离心率为
,且过点(
).
(1)求椭圆E的方程;
(2)设直线l:y=kx+t与圆(1<R<2)相切于点A,且l与椭圆E只有一个公共点B.
①求证:;
②当R为何值时,取得最大值?并求出最大值.
平行四边形中,
,
,且
,以BD为折线,把△ABD折起,
,连接AC.
(1)求证:;
(2)求二面角B-AC-D的大小.
设△ABC的内角A、B、C所对的边长分别为a、b、c,且
(1)求角A的大小;
(2)若角边上的中线AM的长为
,求△ABC的面积.
已知,不等式
的解集为
.
(1)求的值;
(2)若对一切实数
恒成立,求实数
的取值范围.