已知各项均不相等的等差数列{an}的前5项和为S5=35,且a1+1,a3+1,a7+1成等比数列.
(1)求数列{an}的通项公式;
(2)设Tn为数列的前n项和,问是否存在常数m,使Tn=m
,若存在,求m的值;若不存在,说明理由.
已知椭圆的离心率为
,直线
:
与以原点为圆心、以椭圆
的短半轴长为半径的圆相切.
(I)求椭圆的方程;
(II)设椭圆的左焦点为
,右焦点
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,线段
垂直平分线交
于点
,求点
的轨迹
的方程;
设函数.
(Ⅰ)试问函数能否在
时取得极值?说明理由;
(Ⅱ)若当
时,函数
与
的图像有两个公共点,求c
的取值范围.
若实数满足
.
试确定的大小关系.
从椭圆 上一点P向x轴作垂线,垂足恰为左焦点F1,又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且AB//OP,
,求椭圆的方程
设函数=x+ax2+blnx,曲线y=
过P(1,0),且在P点处的切斜线率为2.
(I)求a,b的值;(II)证明:≤2x-2.