学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间
(单位:分钟)之间的关系满足如图所示的图像,当
时,图像是二次函数图像的一部分,其中顶点
,过点
;当
时,图像是线段
,其中
,根据专家研究,当注意力指数大于62时,学习效果最佳.
(1)试求的函数关系式;
(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.
(本小题满分10分)
已知函数f (x)=a+bsinx+2cosx(x∈R)的图象经过点A(0,1),B.
(1)求函数f (x)的单调递减区间;
(2)由函数y=f (x)的图象经过平移是否能得到一个奇函数y=g(x)的图象?若能,请写出平移过程;若不能,请说明理由.
甲乙两位同学参加数学竞赛培训。现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由;
(3)若将频率视为概率,对甲同学在今后的3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为X,求X的分布列及数学期望。
甲、乙两人各射击一次,击中目标的概率分别是和
。假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响。
(Ⅰ)求甲射击4次,至少1次未击中目标的概率;
(Ⅱ)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;
(Ⅲ)假设连续两次未击中目标,则停止射击。问:乙恰好射击5次后,被中止射击的概率是多少?
某高级中学共有3000名学生,各年级男、女生人数如下表:
高一 |
高二 |
高三 |
|
女生 |
523 |
x |
y |
男生 |
487 |
490 |
z |
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.17.
(1)问高二年级有多少名女生?
(2)现对各年级用分层抽样的方法在全校抽取300名学生,问应在高三年级抽取多少名学生?
已知,
,且
是
的必要不充分条件,求实数
的取值范围.