已知函数,
.
(1)若,判断函数
的奇偶性,并加以证明;
(2)若函数在
上是增函数,求实数
的取值范围;
(3)若存在实数使得关于
的方程
有三个不相等的实数根,求实数
的取值范围.
(本小题满分12分)已知直线,双曲线
.
①若直线与双曲线
的其中一条渐近线平行,求双曲线
的离心率;②若直线
过双曲线的右焦点
,与双曲线交于
、
两点,且
,求双曲线方程.
(本小题满分12分)已知椭圆,其中
为左、右焦点,且离心率
,直线
与椭圆交于两不同点
.当直线
过椭圆
右焦点
且倾斜角为
时,原点
到直线
的距离为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若,当
面积为
时,求
的最大值.
(本小题满分12分)已知椭圆经过点
,离心率
.
(Ⅰ)求椭圆的方程;
(Ⅱ)不过原点的直线与椭圆
交于
两点,若
的中点
在抛物线
上,求直线
的斜率
的取值范围.
(本小题满分12分)已知双曲线与椭圆
有共同的焦点,点
在双曲线
上.
(Ⅰ)求双曲线的方程;
(Ⅱ)以为中点作双曲线
的一条弦
,求弦
所在直线的方程.
(本小题满分10分)已知圆C:,直线
(Ⅰ)判断直线与圆
的位置关系。
(Ⅱ)若直线与圆
交于不同两点
,且
=
,求直线
的方程。