某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:
|
喜欢 |
不喜欢 |
合计 |
大于40岁 |
20 |
5 |
25 |
20岁至40岁 |
10 |
20 |
30 |
合计 |
30 |
25 |
55 |
(Ⅰ)判断是否有99.5%的把握认为喜欢“人文景观”景点与年龄有关?
(Ⅱ)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.
下面的临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:,其中
)
(本小题满分12分)、
是常数,关于
的一元二次方程
有实数解记为事件
.
(1)若、
表示投掷两枚均匀骰子出现的点数,求
;
(2)若、
,
且
,求
.
(本小题满分12分)
已知复数,且
,其中
是
的内角,
是角
所对的边。
求角的大小;
如果,求
的面积。
(本小题满分14分)
已知函数.
(Ⅰ)函数在区间
上是增函数还是减函数?证明你的结论;
(Ⅱ)当时,
恒成立,求整数
的最大值;
(Ⅲ)试证明:(
)。
(本小题满分13分)
已知椭圆的两焦点在
轴上, 且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形。
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的动直线
交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点Q,使得以AB为直径的圆恒过点Q ?若存在求出点Q的坐标;若不存在,请说明理由。
(本小题满分12分)
如图1,在Rt中,
,
.D、E分别是
上的点,且
,将
沿
折起到
的位置,使
,如图2.
(Ⅰ)求证:平面平面
;
(Ⅱ)若,求
与平面
所成角的余弦值;
(Ⅲ)当点在何处时,
的长度最小,并求出最小值.