交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T.其
范围为[0,10],分别有五个级别:T∈[0,2)畅通;T∈[2,4)基本畅通; T∈[4,6)轻度拥堵; T∈[6,8)中度拥堵;T∈[8,10]严重拥堵,晚高峰时段(T≥2),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的部分直方图如图所示.
(1)请补全直方图,并求出轻度拥堵、中度拥堵、严重拥堵路段各有多少个?
(2)用分层抽样的方法从交通指数在[4,6),[6,8),[8,l0]的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;
(3)从(2)中抽出的6个路段中任取2个,求至少一个路段为轻度拥堵的概率.
已知函数f(x)= xlnx.
(1) 求函数f(x)的单调区间和最小值;
(2)当b>0时,求证: (其中e为自然对数的底数);
(3)若a>0,b>0, 求证:f(a)+(a+b)ln2 ³ f(a+b)- f(b).
如图所示,椭圆C:的一个焦点为F(1,0),且过点(2,0)
(1)求椭圆C的方程;
(2)已知A、B为椭圆上的点,且直线AB垂直于轴,又直线
:
=4与
轴交于点N,直线AF与BN交
于点M.
(ⅰ)求证:点M恒在椭圆C上;
(ⅱ)求△AMN面积的最大值.
如图示,四棱锥P----ABCD的底面是边长为1的正方形,PA^CD,PA = 1, PD = ,E为PD上一点,PE = 2ED.
(1)求证:PA ^平面ABCD;
(2)求二面角D---AC---E的正切值;
(3)在侧棱PC上是否存在一点F,使得BF // 平面AEC?若存在,指出F点的位置,并证明;若不存在,
说明理由.
设不等式x2+y2£ 4确定的平面区域为U,ïxï+ïyï£ 1确定的平面区域为V.
(1)定义横、纵坐标为整数的点为“整点”,在区域U内任取3个整点,求这些整点中恰有2个整点在区域V的概率;
(2)在区域U内任取3个点,记这3个点在区域V的个数为X,求X的分布列和数学期望EX.
若数列{an}是等比数列,a1>0,公比q¹1,已知lna1和2+ lna5的等差中项为lna2,且a1a2 = e
(1)求{an}的通项公式;(2)设bn= (nÎN*),求数列{bn}的前n项和.