交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T.其
范围为[0,10],分别有五个级别:T∈[0,2)畅通;T∈[2,4)基本畅通; T∈[4,6)轻度拥堵; T∈[6,8)中度拥堵;T∈[8,10]严重拥堵,晚高峰时段(T≥2),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的部分直方图如图所示.
(1)请补全直方图,并求出轻度拥堵、中度拥堵、严重拥堵路段各有多少个?
(2)用分层抽样的方法从交通指数在[4,6),[6,8),[8,l0]的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;
(3)从(2)中抽出的6个路段中任取2个,求至少一个路段为轻度拥堵的概率.
已知数列{an}的前n项和为Sn,且对任意的n∈N*有an+Sn=n.
(1)设bn=an-1,求证:数列{bn}是等比数列;
(2)设c1=a1且cn=an-an-1(n≥2),求{cn}的通项公式.
已知函数f(x)=ax3-3x2+1-(a∈R且a≠0),试求函数f(x)的极大值与极小值.
设命题p:函数是R上的减函数,命题q:函数f(x)=x2-4x+3在
上的值域为[-1,3],若“p且q”为假命题,“p或q”为真命题,求
的取值范围.
选修4—5:不等式选讲
已知函数
(1)若不等式的解集为
,求实数a,m的值。
(2)当a =2时,解关于x的不等式
选修4—1:几何证明选讲
如图所示,已知PA是⊙O相切,A为切点,PBC为割线,弦CD//AP,AD、BC相交于 E点,F为CE上一点,且
(1)求证:A、P、D、F四点共圆;
(2)若AE·ED=24,DE=EB=4,求PA的长。