已知函数,xÎR. (1)求函数的最小正周期和单调递增区间; (2)将函数的图象上各点的纵坐标保持不变,横坐标先缩短到原来的,把所得到的图象再向左平移单位,得到函数的图象,求函数在区间上的最小值.
(I)求证数列; (II)求数列; (III)。
设函数为奇函数,其图象在x=1处的切线与直线垂直,导函数的最小值为. (I)求; (II)求函数的单调递增区间,并求函数在上的最大值和最小值.
如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到点,且在平面BCD上的射影O恰好在CD上. (1)、求证:; (2)、求证:平面平面; (3)、求三棱锥的体积.
已知平面向量,. (Ⅰ)若⊥,求x的值; (Ⅱ)若∥,求|-|.
已知函数. (Ⅰ)若; (Ⅱ)求函数在上最大值和最小值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号