游客
题文

现有甲、乙两个靶.某射手向甲靶射击两次,每次命中的概率为,每命中一次得1分,没有命中得0分;向乙靶射击一次,命中的概率为,命中得2分,没有命中得0分,该射手每次射击的结果相互独立.假设该射手完成以上三次射击.
(1)求该射手恰好命中两次的概率;
(2)求该射手的总得分X的分布列及数学期望E(X);
(3)求该射手向甲靶射击比向乙靶射击多击中一次的概率.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本题满分10分)甲乙两地相距km,汽车从甲地匀速行驶到乙地,速度不得超过km/h,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度km/h的平方成正比,比例系数为,固定部分为元.
(1)把全程运输成本(元)表示为速度(千米/时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?

(本题满分10分)用定义证明函数在定义域上是增函数.

(本题满分10分) 求函数在区间上的最大值和最小值,并指出何时取得最值.

分别是椭圆的左、右焦点,过且斜率为的直线相交于两点,且成等差数列.
(1)若,求的值;
(2)若,设点满足,求椭圆的方程.

已知的两个顶点为,周长为12.
(1)求顶点的轨迹方程;
(2)若直线与点的轨迹交于两点,求的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号