在等差数列和等比数列
中,
,
,
是
前
项和.
(1)若,求实数
的值;
(2)是否存在正整数,使得数列
的所有项都在数列
中?若存在,求出所有的
,若不存在,说明理由;
(3)是否存在正实数,使得数列
中至少有三项在数列
中,但
中的项不都在数列
中?若存在,求出一个可能的
的值,若不存在,请说明理由.
在中,角
为锐角,记角
所对的边分别为
设向量
且
与
的夹角为
(1)求的值及角
的大小;
(2)若,求
的面积
.
已知是定义在
上的奇函数,当
时,
.
(1)求时,
的解析式;
(2)问是否存在这样的非负数,当
时,
的值域为
?若存在,求出所有的
值;若不存在,请说明理由.
已知函数
(1)当时,函数
恒有意义,求实数
的取值范围;
(2)是否存在这样的实数,使得函数
在区间
上为减函数,并且最大值为1?如果存在,试求出
的值;如果不存在,请说明理由.
试比较下列各式的大小(不写过程)
1-与
-
-
与
-
通过上式请你推测出-
与
-
(n
2,n
N)的大小,并用分析法证明
某电脑公司有6名产品推销员,其中5名产品推销员工作年限与年推销金额数据如下表:
推销员编号 |
1 |
2 |
3 |
4 |
5 |
工作年限![]() |
3 |
5 |
6 |
7 |
9 |
推销金额![]() |
2 |
3 |
3 |
4 |
5 |
(Ⅰ) 求年推销金额关于工作年限
的线性回归方程
(Ⅱ)若第6名推销员的工作年限为11年,试估计他的年推销金额.