已知椭圆C:的离心率为
,左、右焦点分别为
,点G在椭圆C上,且
,
的面积为3.
(1)求椭圆C的方程:
(2)设椭圆的左、右顶点为A,B,过的直线
与椭圆交于不同的两点M,N(不同于点A,B),探索直线AM,BN的交点能否在一条垂直于
轴的定直线上,若能,求出这条定直线的方程;若不能,请说明理由.
已知函数f(x)=ax3-bx2 +(2-b)x+1,在x=x2处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2。
(1)证明:a>0;
(2)若z=a+2b,求z的取值范围。
二次函数f(x)=ax2+x+1(a>0)的图象与x轴的两个不同的交点的横坐标分别为x1、x2。
(1)证明:(1+x1)(1+x2)=1;
(2)证明:x1<-1,x2<-1;
(3)若函数y=xf(x)在区间(-,-4)
上单调递增,试求a的取值范围。
已知0<a<1,0<b<1,0<c<1。求证:(1-a)b,(1-b)c,(1-c)a中至少有一个不大于。
若a、b、c均为正数,求证:。
如图,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r,计划将此钢板割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S。
(1)求面积S以x为自变量的函数式,并写出其定义域;
(2)求面积S的最大值。