数列的前n项和记为,,点在直线上,n∈N*.(1)求证:数列是等比数列,并求数列的通项公式;(2)设,是数列的前n项和,求的值.
已知函数,其中实数。 (1)若,求曲线在点处的切线方程; (2)若在处取得极值,试求的单调区间。
已知函数是定义在上的偶函数,且时,。 (Ⅰ)求的值; (Ⅱ)求函数的值域; (Ⅲ)设函数的定义域为集合,若,求实数的取值范围。
已知方程组的解集是{},且{}是方程x2+()x+=0的解集的一个真子集; (1)求实数、的值; (2)求方程x2+()x+=0解集的所有真子集.
附加题 设是正实数,且。 证明:
已知函数 (1)求函数的单调区间和最大值; (2)若恒成立,求的取值范围; (3)证明:①在上恒成立; ②
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号