甲乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(1)设,
表示甲乙抽到的牌的数字,
如甲抽到红桃2,乙抽到红桃3,记为
,
,写出甲乙二人抽到的牌的所有情况;
(2)若甲抽到红桃3,则乙抽出的牌面数字比3大的概率是多少?
(3)甲乙约定,若甲抽到的牌的牌面数字比乙大,则甲胜;否则,乙胜,你认为此游戏是否公平?请说明理由.
(本小题12分)
在锐角△ABC中,分别为角A,B,C所对的边,且
。
①求角C的大小。
②若C=,且△ABC的面积为
,求
的值。
(本小题12分)
已知是等差数列,且
①求的通项
。
②求的前n项和Sn的最大值。
(本小题12分)
一海轮以20海里/小时的速度向正东航行,它在A点时测得灯塔P在船的北偏东60°方向上,2小时后船到达B点时测得灯塔P在船的北偏东45°方向上。求:
①船在B点时与灯塔P的距离。
②已知以点P为圆心,55海里为半径的圆形水城内有暗礁,那么这船继续向正东航行,有无触礁的危险?
(本小题满分14分)对于定义在区间D上的函数,若存在闭区间
和常数
,使得对任意
,都有
,且对任意
∈D,当
时,
恒成立,则称函数
为区间D上的“平底型”函数.
(Ⅰ)判断函数和
是否为R上的“平底型”函数?并说明理由;
(Ⅱ)设是(Ⅰ)中的“平底型”函数,k为非零常数,若不等式
对一切
R恒成立,求实数
的取值范围;
(Ⅲ)若函数是区间
上的“平底型”函数,求
和
的值.
(本小题满分14分)已知线段,
的中点为
,动点
满足
(
为正常数).
(Ⅰ)建立适当的直角坐标系,求动点所在的曲线方程;
(Ⅱ)若,动点
满足
,且
,试求
面积的最大值和最小值.