设f(x)=a(x-5)2+6ln x,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.
已知等差数列的首项为a,公差为b;等比数列
的首项为b,公比为a,其中a,
,且
.
(1)求a的值;
(2)若对于任意,总存在
,使
,求b的值;
(3)在(2)中,记是所有
中满足
,
的项从小到大依次组成的数列,又记
为
的前n项和,
的前n项和,求证:
≥
如图,摩天轮的半径为40m,摩天轮的圆心O距地面的高度为50m,摩天轮做匀速转动,每3min转一圈,摩天轮上的点P的起始位置在最低点处.
(1)已知在时刻t (min)时点P距离地面的高度为f (t) = A sin + h,求2006min时点距离地面的高度.
(2)求证:不论t为何值,f (t) + f (t + 1) + f (t + 2)是定值.
直三棱柱
中,
,
.
(1)求证:平面平面
;
(2)求三棱锥的体积.
已知中,
,求:
(1)角的度数;
(2)求三角形面积的最大值
已知数列的通项公式是
,数列
是等差数列,令集合
,
,
.将集合
中的元素按从小到大的顺序排列构成的数列记为
.
(1)若,
,求数列
的通项公式;
(2)若,数列
的前5项成等比数列,且
,
,求满足
的正整数的个数.