如图,过圆O外一点M作它的一条切线,切点为A,过A点作直线AP垂直直线OM,垂足为P.
(1)证明:OM·OP=OA2;
(2)N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点.过B点的切线交直线ON于K.证明:∠OKM=90°.
已知函数[
(1)求函数的单调递减区间;
(2)若在区间
上的最大值为20,求它在该区间上的最小值。
命题p:关于的不等式
的解集为
;
命题q:函数为增函数.
分别求出符合下列条件的实数的取值范围.
(1)p、q至少有一个是真命题;(2)p∨q是真命题且p∧q是假命题.
抛物线的顶点在原点,它的准线过双曲线的一个焦点,并于双曲线的实轴垂直,已知抛物线与双曲线的交点为
,求抛物线的方程和双曲线的方程。
已知抛物线直线
过抛物线的焦点
且与该抛物线交于
、
两点(点A在第一象限)
(Ⅰ)若,求直线
的方程;
(Ⅱ)过点的抛物线的切线与直线
交于点
,求证:
。
已知椭圆+
=1(a>b>0)上的点M (1,
)到它的两焦点F1,F2的距离之和为4,A、B分别是它的左顶点和上顶点。
(Ⅰ)求此椭圆的方程及离心率;
(Ⅱ)平行于AB的直线l与椭圆相交于P、Q两点,求|PQ|的最大值及此时直线l的方程。