某少数民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.
(1)求出f(5)的值;
(2)利用合情推理的“归纳推理思想”,归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式;
(3)求的值.
(本小题共13分)某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.
(Ⅰ) 求这4位乘客中至少有一名乘客在第2层下电梯的概率;
(Ⅱ) 用表示4名乘客在第4层下电梯的人数,求
的分布列和数学期望.
(本小题共13分)已知函数的最小正周期为
.
(Ⅰ)求的值;
(Ⅱ)求函数的单调区间及其图象的对称轴方程.
(本小题满分13分)已知,
(Ⅰ)若,求
的值;
(Ⅱ)若,求
中含
项的系数;
(Ⅲ)证明:
(本小题满分13分)如图:平行四边形的周长为8,点
的坐标分别为
.
(Ⅰ)求点所在的曲线方程;
(Ⅱ)过点的直线
与(Ⅰ)中曲线交于点
,与y轴交于点
,且
//
,求证:
为定值.
(本小题满分13分)已知函数.
(Ⅰ)求函数在点
处的切线方程;
(Ⅱ)求函数的单调区间和极值.