在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.
(1)求抛物线C的方程.
(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.
设关于的方程
(1)若,求方程有实根的概率;
(2)若,求方程有实根的概率.
已知
(1)化简;
(2)若是第三象限角,且
,求
的值;
(3)若,求
的值。
为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00—10:00间各自的点击量,得如下所示的统计图,根据统计图:
(1)甲、乙两个网站点击量的极差分别是多少?
(2)甲网站点击量在[10,40]间的频率是多少?
(3)甲、乙两个网站哪个更受欢迎?并说明理由。
某区高二年级的一次数学统考中,随机抽取名同学的成绩,数据的分组统计表如下:
分组 |
频数 |
频率 |
频率/组距 |
(40,50] |
2 |
0.02 |
0.002 |
(50,60] |
4 |
0.04 |
0.004 |
(60,70] |
11 |
0.11 |
0.011 |
(70,80] |
38 |
0.38 |
0.038 |
(80,90] |
![]() |
![]() |
![]() |
(90,100] |
11 |
0.11 |
0.011 |
合计 |
![]() |
![]() |
![]() |
(1)求出表中的值;
(2)若该区高二学生有5000人,试估计这次统考中该区高二学生的平均分数及分数在区间内的人数.
已知角的终边上一点
(1)当时,求
的值;
(2)当时,求
的值