已知函数f(x)=x3+
x2-ax-a,x∈R,其中a>0.
(1)求函数f(x)的单调区间;
(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围.
如图,已知正方体ABCD-A1B1C1D1,AD1与A1D相交于点O.
(1)判断AD1与平面A1B1CD的位置关系,并证明;
(2)求直线AB1与平面A1B1CD所成的角.
建立适当的坐标系,用坐标法解决下列问题:
已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?
![]() |
已知直线l平行于直线,直线l与两坐标轴围成的三角形的周长是15,求直线l的方程.
如图,四棱锥S- ABCD中,底面ABCD为平行四边形,E是SA上一点,试探求点E的位置,使SC//平面EBD,并证明.
答:点E的位置是.
证明:
已知函数f(x)=lg(ax-kbx )(k是正实数,a>1>b>0)的定义域为(0,+∞),问是否存在实数a,b,当x∈(1,+∞)时,f(x)的值取到一切正实数,且f(3)=lg4;如果存在,求出a,b的值;如果不存在,请说明理由。