如图,在平面直角坐标系中,已知点A(2,3),B(6,3),连结AB,如果点P在直线y=x-1上 ,且点P到直线AB的距离小于1,那么称点P是线段AB的“邻近点”.
(1)判断点C(,
)是否是线段AB的“邻近点” ;
(2)若点Q(m,n)是线段AB的“邻近点”,则m的取值范围 .
如图,正方形ABCD的边长为12,划分成12×12个小正方形格.将边长为n(n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n﹣1)×(n﹣1)的正方形.如此摆放下去,最后直到纸片盖住正方形ABCD的右下角为止.
请你认真观察思考后回答下列问题:
(1)由于正方形纸片边长n的取值不同,完成摆放时所使用正方形纸片的张数也不同,请填写下表:
纸片的边长n |
2 |
3 |
4 |
5 |
6 |
使用的纸片张数 |
(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.
①当n=2时,求S1:S2的值;
②用含n的代数式表示S2.
点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a-b|.
利用数形结合思想回答下列问题:
(1)数轴上表示2和10两点之间的距离是_________,数轴上表示2和-10的两点之间的距离是______.
(2)数轴上表示x和-2的两点之间的距离表示为____________.
(3)若x表示一个有理数, |x-1|+|x+2|有最小值吗?若有,请求出最小值,若没有,写出理由.
(4)若x表示一个有理数,求|x-1|+|x-2|+|x-3|+|x-4|+……+|x-2014|+|x-2015|的最小值.
如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.
(1)认为图②中的阴影部分的正方形的边长等于 .
(2)请用两种不同的方法列代数式表示图②中阴影部分的面积,
方法① ;方法② .
(3)观察图②,你能写出(m+n)2,(m-n)2,4mn这三个代数式之间的等量关系吗?
(4)根据⑶题中的等量关系,解决如下问题:若a+b=6,ab=4,则求(a-b)2的值.
甲、乙两家文具商店出售同样的钢笔和本子.钢笔每支18元,本子每本2元.甲商店推出的优惠方法为买一支钢笔送两本本子;乙商店的优惠方法为按总价的九折优惠.小丽想购买5支钢笔,本子本(
≥10)
(1)若到甲商店购买,应付 元(用代数式表示).
(2)若到乙商店购买,应付 元(用代数式表示).
(3)若小丽要买本子10本,应选择那家商店?若买100本呢?