如图,已知椭圆C:+y2=1,A、B是四条直线x=±2,y=±1所围成的两个顶点. (1)设P是椭圆C上任意一点,若=m+n,求证:动点Q(m,n)在定圆上运动,并求出定圆的方程;(2)若M、N是椭圆C上两上动点,且直线OM、ON的斜率之积等于直线OA、OB的斜率之积,试探求△OMN的面积是否为定值,说明理由.
函数,,的图象如图所示. (1)试说明哪个函数对应于哪个图象,并解释为什么. (2)以已有图象为基础,在同一坐标系中画出,,的图象.
已知幂函数的图象过点,试求出此函数的解析式, 并作出图象,判断奇偶性、单调性.
已知函数(a>0,且, (1)求的定义域;(2)讨论函数的增减性.
函数的最小值为,求的解析式.
某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量mg/L与时间h间的关系为. 如果在前5个小时消除了的污染物,试回答: (1)10小时后还剩百分之几的污染物? (2)污染物减少需要花多少时间(精确到1h)? (3)画出污染物数量关于时间变化的函数图象,并在图象上表示计算结果.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号