(本小题满分12分)如图,在四棱锥P-ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD是边长为2的等边三角形,且与底面ABCD垂直,E为PA的中点.
(Ⅰ)求证:DE∥平面PBC;
(Ⅱ)求三棱锥A-PBC的体积.
已知函数.(
为自然对数的底)
(Ⅰ)求的最小值;
(Ⅱ)是否存在常数使得
对于任意的正数
恒成立?若存在,求出
的值;若不存在,说明理由.
已知椭圆的方程为它的一个焦点与抛物线
的焦点重合,离心率
过椭圆的右焦点F作与坐标轴不垂直的直线
交椭圆于A、B两点.(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点求直线
的方程
学校或班级举行活动,通常需要张贴海报进行宣传.现让你设计一张如图所示的张贴的海报,要求版心面积为128,上、下两边各空2
,左、右两边各空1
.你如何设计海报的尺寸,才能使四周空白面积最小?
已知命题“若
上是减函数”;
“关于
的不等式
的解集为
”.若“
或
”为真,求实数
的取值范围.
已知抛物线的焦点为
,过焦点
且不平行于
轴的动直线
交抛物线于
,
两点,抛物线在
、
两点处的切线交于点
.
(Ⅰ)求证:,
,
三点的横坐标成等差数列;
(Ⅱ)设直线交该抛物线于
,
两点,求四边形
面积的最小值.