有一个二次函数的图象,三位学生分别说出了它的一些特点.
甲:对称轴是直线x=4;
乙:与x轴两交点的横坐标都是整数;
丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3;
请写出满足上述全部特点的二次函数解析式:
某宾馆有30个房间供游客住宿,当每个房间的房价为每天160元时,房间会全部住满。当每个房间每天的房价每增加10元时,就会有一个房间空闲。宾馆需对游客居住的每个房间每天支出20元的各种费用。根据规定,每个房间每天的房价不得高于260元。
设每个房间的房价每天增加x元(x为10的整数倍)。
(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;
(2)设宾馆一天的利润为w元,求w与x的函数关系式;
(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?
如图,AB是⊙O的直径,C是的中点,CE⊥AB于E,BD交CE于点F,
(1)求证:CF=BF;
(2)若CD=12,AC=16,求⊙O的半径和CE的长。
如图,在平面直角坐标系中,已知OA=12cm,OB=6cm,点P从O点开始沿OA边向点A以1cm/s的速度移动:点Q从点B开始沿BO边向点O以1cm/s的速度移动,如果P、Q同时出发,用t(s)表示移动的时间(),那么:
(1)设△POQ的面积为,求
关于
的函数解析式。
(2)当△POQ的面积最大时,△ POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由。
如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=的图像经过B、C两点.
(1)求该二次函数的解析式;
(2)结合函数的图像探索:当y>0时x的取值范围.
小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字3、4、5,现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.如果和为奇数,则小明胜;和为偶数,则小亮胜.
(1)请你用画树状图或列表的方法,求出这两数和为8的概率;
(2)你认为这个游戏对双方公平吗?说说你的理由.