游客
题文

在四棱锥PABCD中,底面ABCD是边长为1的正方形,且PA⊥平面ABCD.
 
(1)求证:PCBD
(2)过直线BD且垂直于直线PC的平面交PC于点E,且三棱锥EBCD的体积取到最大值.
①求此时四棱锥EABCD的高;
②求二面角ADEB的正弦值的大小.

科目 数学   题型 解答题   难度 较难
知识点: 空间向量的应用
登录免费查看答案和解析
相关试题

已知数列的前项和为,其中为常数.
(1)证明:
(2)是否存在,使得为等差数列?并说明理由.

如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.

(1)若PB=,求PA;
(2)若∠APB=150°,求tan∠PBA.

已知抛物线的焦点也是椭圆的一个焦点,的公共弦的长为
(1)求的方程;
(2)过点的直线相交于两点,与相交于两点,且同向.
(ⅰ)若,求直线的斜率;
(ⅱ)设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形.

已知数列满足
(1)若为递增数列,且成等差数列,求的值;
(2)若,且是递增数列,是递减数列,求数列的通项公式.

如图,在四棱锥中,底面是正方形,底面, 点的中点,,且交于点

(Ⅰ)求证:平面
(Ⅱ)求证:平面⊥平面
(Ⅲ)求二面角的余弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号