无锡学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有2人,会跳舞的有5人,现从中选2人.设ξ为选出的人中既会唱歌又会跳舞的人数,且P(ξ>0)=
(1)求文娱队的队员人数;
(2)写出ξ的概率分布列并计算E(ξ).
设F1、F2分别为椭圆C:=1(a>b>0)的左、右两个焦点.
(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线写出具有类似特性的性质,并加以证明.
已知点,直线
:
,
为平面上的动点,过点
作直线
的垂线,垂足为
,且
.
(1)求动点的轨迹
的方程;
(2)已知圆过定点
,圆心
在轨迹
上运动,且圆
与
轴交于
、
两点,设
,
,求
的最大值.
已知椭圆C:,两个焦点分别为
、
,斜率为k的直线
过右焦点
且与椭圆交于A、B两点,设
与y轴交点为P,线段
的中点恰为B。
(1)若,求椭圆C的离心率的取值范围。
(2)若,A、B到右准线距离之和为
,求椭圆C的方程。
设函数.
(I)若是函数
的极大值点,求
的取值范围;
(II)当时,若在
上至少存在一点
,使
成立,求
的取值范围.
已知数列中,
是它的前
项和,并且
,
.
(Ⅰ)设,求证
是等比数列(Ⅱ)设
,求证
是等差数列;
(Ⅲ)求数列的通项公式.