一投掷飞碟的游戏中,飞碟投入红袋记2分,投入蓝袋记1分,未投入袋记0分.经过多次试验,某人投掷100个飞碟有50个入红袋,25个入蓝袋,其余不能入袋.
(1)求该人在4次投掷中恰有三次投入红袋的概率;
(2)求该人两次投掷后得分ξ的数学期望Eξ.
已知,
为第二象限角,求
和
及
的值.
.(本小题满分15分)
已知函数处取得极值。
(1)求实数a的值;
(2)求函数的单调区间;
(3)若关于x的方程在区间(0,2)有两个不等实根,求实数b的取值范围。
(本小题满分15分)已知点P(4,4),圆C:与椭圆E:
有一个公共点A(3,1),F1.F2分别
是椭圆的左.右焦点,直线PF1与圆C相切.
(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求的范围.
本小题满分14分)如图,四棱锥E—ABCD中,ABCD是矩形,平面EAB平面ABCD,AE=EB=BC=2,F为CE上的点,
且BF平面ACE.
(1)求证:AEBE;
(2)求三棱锥D—AEC的体积;
(3)求二面角A—CD—E的余弦值.
(本小题满分14分)
已知数列中,
,
,其前
项和
满足
,令
.
(1)求数列的通项公式;
(2)若,求证:
(
).