如图,在三棱锥S ABC中,平面EFGH分别与BC,CA,AS,SB交于点E,F,G,H,且SA⊥平面EFGH,SA⊥AB,EF⊥FG.
求证:(1)AB∥平面EFGH;
(2)GH∥EF;
(3)GH⊥平面SAC.
设函数,其中
,曲线
过点
,且在点
处的切线方程为
.
(1)求的值;
(2)证明:当时,
;
(3)若当时,
恒成立,求实数
的取值范围.
已知抛物线上一点
到其焦点
的距离为4;椭圆
的离心率
,且过抛物线的焦点
.
(1)求抛物线和椭圆
的标准方程;
(2)过点的直线
交抛物线
于
、
两不同点,交
轴于点
,已知
,求证:
为定值.
(3)直线交椭圆
于
,
两不同点,
,
在
轴的射影分别为
,
,
,若点S满足:
,证明:点S在椭圆
上.
某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在
的数据).
(Ⅰ)求样本容量n和频率分布直方图中x、y的值;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设表示所抽取的3名同学中得分在
的学生个数,求
的分布列及其数学期望.
如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,,
,
.
(Ⅰ)求证:平面PQB⊥平面PAD;
(Ⅱ)若二面角M﹣BQ﹣C为30°,设PM=tMC,试确定t的值.
已知数列的前
项和为
,
,
,
.
(Ⅰ)求证:数列是等比数列;
(Ⅱ)设数列的前
项和为
,
,点
在直线
上,若不等式
对于
恒成立,求实数
的最大值.