游客
题文

如图,在三棱锥S ABC中,平面EFGH分别与BC,CA,AS,SB交于点E,F,G,H,且SA⊥平面EFGH,SA⊥AB,EF⊥FG.

求证:(1)AB∥平面EFGH;
(2)GH∥EF;
(3)GH⊥平面SAC.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

设函数,其中,曲线过点,且在点处的切线方程为
(1)求的值;
(2)证明:当时,
(3)若当时,恒成立,求实数的取值范围.

已知抛物线上一点到其焦点的距离为4;椭圆的离心率,且过抛物线的焦点
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线两不同点,交轴于点,已知,求证:为定值.
(3)直线交椭圆两不同点,轴的射影分别为,若点S满足:,证明:点S在椭圆上.

某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).

(Ⅰ)求样本容量n和频率分布直方图中x、y的值;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设表示所抽取的3名同学中得分在的学生个数,求的分布列及其数学期望.

如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,

(Ⅰ)求证:平面PQB⊥平面PAD;
(Ⅱ)若二面角M﹣BQ﹣C为30°,设PM=tMC,试确定t的值.

已知数列的前项和为
(Ⅰ)求证:数列是等比数列;
(Ⅱ)设数列的前项和为,点在直线上,若不等式对于恒成立,求实数的最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号