某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在
的数据).
(Ⅰ)求样本容量n和频率分布直方图中x、y的值;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设表示所抽取的3名同学中得分在
的学生个数,求
的分布列及其数学期望.
已知函数,求不等式
的解集。
数列中,已知
,
时,
.数列
满足:
.
(1)证明:为等差数列,并求
的通项公式;
(2)记数列的前
项和为
,若不等式
成立(
为正整数).求出所有符合条件的有序实数对
.
设椭圆:
的离心率为
,点
(
,0),
(0,
)原点
到直线
的距离为
。
(1) 求椭圆的方程;
(2) 设点为(
,0),点
在椭圆
上(与
、
均不重合),点
在直线
上,若直线
的方程为
,且
,试求直线
的方程.
设函数(
).区间
,定义区间
的长度为 b-a .
(1)求区间I的长度(用 a 表示);
(2)若,求
的最大值.
设是公比大于1的等比数列,
为数列
的前
项和.已知
,且
构成等差数列.
(1)求数列的通项公式;
(2)令,求数列
的前n项和
.