游客
题文

某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).

(Ⅰ)求样本容量n和频率分布直方图中x、y的值;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设表示所抽取的3名同学中得分在的学生个数,求的分布列及其数学期望.

科目 数学   题型 解答题   难度 中等
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

选修4-4:极坐标与参数方程(本小题满分7分)
在直角坐标系中,以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,曲线的参数方程为
(1)求曲线的直角坐标方程与曲线的普通方程;
(2)试判断曲线是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.

选修4-2:矩阵与变换(本小题满分7分)已知二阶矩阵有特征值λ1=4及属于特征值4的一个特征向量并有特征值及属于特征值-1的一个特征向量
(Ⅰ)求矩阵;(Ⅱ )求

(本小题满分14分)已知函数,其中a为实数.
(1)求g(x)的极值;
(2)设a<0,若对任意的恒成立,求a的最小值.

(本小题满分13分)如图,分别过椭圆左右焦点的动直线相交于点,与椭圆分别交于不同四点, 直线的斜率满足.已知当轴重合时,

(1)求椭圆的方程;
(2)是否存在定点,使得为定值.若存在,求出点坐标并求出此定值,若不存在,说明理由.

(本小题满分13分)某工厂生产A,B两种型号的玩具,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种玩具各100件进行检测,检测结果统计如下:

测试指标
[70,76)
[76,82)
[82,88)
[88,94)
[94,100)
玩具A
8
12
40
32
8
玩具B
7
18
40
29
6


(Ⅰ)试分别估计玩具A、玩具B为正品的概率;
(Ⅱ)生产一件玩具A,若是正品可盈利40元,若是次品则亏损5元;生产一件玩具B,若是正品可盈利50元,若是次品则亏损10元.在(I)的前提下,
(i)记X为生产1件玩具A和1件玩具B所得的总利润,求随机变量X的分布列和数学期望;
(ii)求生产5件玩具B所获得的利润不少于140元的概率.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号